С распространением больших данных растет спрос на вычислительную и алгоритмическую эффективность. Главная задача настоящей книги состоит в том, чтобы предоставить способы применения мощных методов машинного обучения с открытым исходным кодом в крупномасштабных проектах без привлечения дорогостоящих корпоративных решений или больших вычислительных кластеров. Описаны масштабируемое обучение в Scikit-learn, нейронные сети и глубокое обучение с использованием Theano, H2O и TensorFlow. Рассмотрены классификационные и регрессионные деревья, а также обучение без учителя. Охвачены эффективные методы машинного обучения в вычислительной среде MapReduce на платформах Hadoop и Spark на языке Python.С этой книгой вы научитесь:• применять большинство масштабируемых алгоритмов машинного обучения;• работать с новейшими крупномасштабными методами машинного обучения;• увеличивать прогнозную точность при помощи методов глубокого обучения и масштабируемых методов обработки данных;• работать с вычислительной парадигмой Map-Reduce в платформе Spark;• применять эффективные алгоритмы машинного обучения на основе платформ Spark и Hadoop;• создавать мощные ансамбли в крупном масштабе;• использовать потоки данных для обучения линейных и нелинейных прогнозных моделей на чрезвычайно больших наборах данных, используя всего одну машину.
Вес
625
Ширина упаковки
180
Высота упаковки
20
Глубина упаковки
240
Автор
Бастиан Шарден,Лука Массарон,Альберто Боскетти
Тип издания
Отдельное издание
Тип обложки
Твердый переплет
Произведение
Крупномасштабное машинное обучение вместе с Python