В настоящей монографии на основе аппроксимационно-топологического подхода к исследованию задач гидродинамики исследуется разрешимость в слабом смысле начально-краевых задач для класса вязкоупругих сред типа Кельвина-Фойгта. Наряду с различными результатами о разрешимости рассматриваемых задач, для одной из таких моделей получены результаты о существовании минимального траекторного и глобального аттракторов и существовании решения задачи оптимального управления с обратной связью, минимизирующего заданный функционал качества. Также для удобства читателя приведены используемые в книге понятия степени Лере-Шаудера вполне непрерывных векторных полей, степени многозначных вполне непрерывных векторных полей с компактными выпуклыми значениями и теоремы о компактности вложения.