Теория математических биллиардов описывает движение материальной точки в области с упругим отражением от границы или, что-то же самое, поведение лучей света в области с зеркальной границей. В книге отражены связи теории биллиардов с дифференциальной геометрией, классической механикой и геометрической оптикой. Кроме того, подробно изучаются вариационные принципы биллиардной динамики, симплектическая геометрия лучей света и интегральная геометрия, существование и несуществование каустик, оптические свойства кривых и поверхностей второго порядка, вполне интегрируемые биллиарды, периодические биллиардные траектории, биллиарды в многоугольниках, механизмы возникновения хаоса, а также менее известные внешние биллиарды. Особенностью издания, основанного на специальном курсе для студентов, является большое количество отступлений: эволюты и эвольвенты, теорема о четырех вершинах, математическая теория радуги, распределение первых цифр в различных последовательностях, теория Морса, теорема Пуанкаре о возвращении, четвертая проблема Гильберта, теорема Понселе и многое другое. Книга богато иллюстрирована. В дополнении, написанном для русского издания, освещены результаты самых последних исследований.